منابع مشابه
Learned Primal-dual Reconstruction
We propose the Learned Primal-Dual algorithm for tomographic reconstruction. The algorithm accounts for a (possibly non-linear) forward operator in a deep neural network by unrolling a proximal primal-dual optimization method, but where the proximal operators have been replaced with convolutional neural networks. The algorithm is trained end-to-end, working directly from raw measured data and i...
متن کاملPrimal-Dual Combinatorial Algorithms
Linear program and its duality have long been ubiquitous tools for analyzing NP-hard problems and designing fast approximation algorithms. Plotkin et al proposed a primaldual combinatorial algorithm based on linear duality for fractional packing and covering, which achieves significant speedup on a wide range of problems including multicommodity flow. The key ideas there are: 1) design a primal...
متن کاملThe Primal - dual Algorithm
As we have seen before, using strong duality, we know that the optimum value for the following two linear programming are equal, i.e. u = w, if they are both feasible. u = max{cx : Ax ≤ b, x ≥ 0} (P ) w = min{b y : A y ≥ c, y ≥ 0} (D) Using the above result, we can check the optimality of a primal and/or a dual solution. Theorem 1. Suppose x and y are feasible solutions to (P ) and (D). Then x ...
متن کاملDual-Primal FETI Method
The FETI algorithms are numerically scalable iterative domain decomposition methods. These methods are well documented for solving equations arising from the Finite Element discretization of second or fourth order elasticity problems. The one level FETI method equipped with the Dirichlet preconditioner was shown to be numerically scalable for second order elasticity problems while the two level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2018
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2018.2799231